[인공지능 기술] “LLM 버블 내년 붕괴…범용거대모델 아닌 버티컬 AI 뜰 것”
[인공지능 기술] “LLM 버블 내년 붕괴…범용거대모델 아닌 버티컬 AI 뜰 것”
“LLM 버블 내년 붕괴…범용거대모델 아닌 버티컬 AI 뜰 것”
최상위 모델 독식 우려도…”오픈AI·앤트로픽 최대주주 MS·구글”

(서울=뉴스1) 김민석 기자
“인공지능(AI) 버블이 아닌 LLM 버블이 내년 붕괴할 수 있습니다.”
델랑그는 18일(현지시간) Axios BFD 서밋에서 “범용 거대 모델로 모든 기업·사람의 문제를 해결할 수 있다는 아이디어에 관심과 자금이 모두 집중돼 있다”며 “현실에선 막대한 연산 자원을 투입한 하나의 모델이 아닌 분야별 특화 모델이 문제를 해결하게 될 것”이라고 지적했다.
이어 “지금 많은 사람들이 서둘러(또는 심지어 패닉에 빠져) 아주 단기적인 접근을 하고 있다고 생각한다”며 “AI 업계에 15년 종사하면서 이런 사이클들을 봐왔다”고 했다.
델랑그가 강조한 버티컬 AI(의료·법률·금융 등 특정 산업에 특화한 AI) 성장 추세는 시장조시기관의 분석 보고서에서도 확인된다. 글로벌마켓인사이츠에 따르면 버티컬 AI(의료·법률·금융 등 특정 산업에 특화한 AI) 시장 규모는 2024년부터 2034년까지 연평균 21.6% 성장할 것으로 전망했다.
베세머벤처파트너스는 버티컬 AI 시장 규모가 기존 버티컬 SaaS의 최소 10배에 달할 것으로 내다봤다. 버티컬 AI 스타트업 경우 기존 SaaS 시스템 연간계약가치(ACV)의 약 80%에 달하는 금액을 받으며 연 400% 성장하고 있다고 분석했다.
델랑그는 이를 토대로 LLM 버블이 붕괴하더라도 허깅페이스는 건재할 것으로 자신했다.
그는 “AI 산업은 충분히 다각화돼 있어 LLM 같은 일부 영역이 과대평가됐더라도 전체 AI 분야나 우리 회사에 큰 영향을 미치진 않을 것”이라고 했다.

반면 미래 소프트웨어 비즈니스는 독립 앱·플랫폼이 아닌 AI 에이전트에 탑재되는 형태의 버티컬 AI 구조로 재편될 것이란 전망도 나온다.
앞서 사티아 나델라 MS CEO 등을 비롯한 IT 기술 리더들은 AI 에이전트 기술아 고도화할수록 기존 독립 플랫폼·앱 체제는 점차 붕괴할 것으로 예상했다.
반면 AI 소프트웨어 기업들은 버티컬 AI와 기존 SaaS 체제가 공존할 것으로 전망하고 있어 논쟁이 현재 진행형이다.
이와 관련 베인앤컴퍼니는 “파괴는 필수지만 파괴 대상일지 아닐지는 상황에 따라 다를 것”이라며 “AI 에이전트가 기존 시장의 영역을 통합하는 측면이 있지만, 일부는 별도 상품화가 지속되고 기존 빅테크에게 유리한 때도, 스타트업에 유리할 때도 있을 것”이라고 했다.
오픈AI는 AI 에이전트 서비스에 적합한 단말기를 직접 개발하고 있다. 올해 3월엔 AI 에이전트 전용 소프트웨어 개발 플랫폼 ‘리스폰스 API’를 출시했다. 리스폰스 API는 기존 ‘어시스턴트 API’를 내년 8월 26일까지 순차적으로 대체할 예정이다.
스타트업 CEO인 자인 재퍼는 “버티컬 AI 시장을 겨냥한 우리 모두 오픈AI·앤트로픽·MS·구글이 만들어 놓은 플랫폼 위에서 모델을 구축하고 있다”며 우려했다.
타임지는 “오픈AI 최대 투자자는 MS, 앤트로픽의 최대주주는 아마존과 구글”이라며 “빅테크 기업들이 AI 인프라부터 앱까지 수직 통합을 추구하고 있다”고 했다.
ideaed@news1.kr
<용어설명>
■ LLM
Large Language Model. 대규모 언어 모델. 자연어 처리(NLP) 작업을 수행할 수 있는 머신 러닝 모델을 말한다. 자연어의 복잡성을 이해할 수 있어 기존 기계 학습 알고리즘보다 정확하다.
■ SaaS
SaaS(서비스형 소프트웨어·Software as a Service)는 소프트웨어를 인터넷 서비스 형태로 제공하는 클라우드 기반 소프트웨어 모델이다. 이용자는 별도 프로그램 설치 또는 서버 구축 없이 웹 브라우저로 소프트웨어를 활용할 수 있다.
■ 리스폰스 API
리스폰스 API(Responses API)는 오픈AI가 2025년 3월 11일 출시한 AI 에이전트 구축을 위한 새로운 API 인터페이스입니다. Chat Completions API의 진화 버전으로 에이전트 애플리케이션 개발에 특화됐다.
[출처] https://v.daum.net/v/20251125155911706
![]()






